Differential Forms on Wasserstein Space and Infinite-Dimensional Hamiltonian Systems

Category: E-Book | Comment: 0

Download Now

Differential Forms on Wasserstein Space and Infinite-Dimensional Hamiltonian Systems

Wilfred Gangbo, Hwa Kil Kim, Tommaso Pacini, "Differential Forms on Wasserstein Space and Infinite-Dimensional Hamiltonian Systems"
English | ISBN: 0821849395 | 2011 | 77 pages | PDF | 1 MB

Let $\mathcal{M}$ denote the space of probability measures on $\mathbb{R}^D$ endowed with the Wasserstein metric. A differential calculus for a certain class of absolutely continuous curves in $\mathcal{M}$ was introduced by Ambrosio, Gigli, and Savare. In this paper the authors develop a calculus for the corresponding class of differential forms on $\mathcal{M}$. In particular they prove an analogue of Green's theorem for 1-forms and show that the corresponding first cohomology group, in the sense of de Rham, vanishes. For $D=2d$ the authors then define a symplectic distribution on $\mathcal{M}$ in terms of this calculus, thus obtaining a rigorous framework for the notion of Hamiltonian systems as introduced by Ambrosio and Gangbo. Throughout the paper the authors emphasize the geometric viewpoint and the role played by certain diffeomorphism groups of $\mathbb{R}^D$.

Note: configure/disable your AdBlocker if you don't see the link
Download link:

Buy Premium From My Links To Support Me & Download with MaX SPeeD!

Direct Download


Tags: Differential, Wasserstein, Infinite, Hamiltonian, Systems

Differential Forms on Wasserstein Space and Infinite-Dimensional Hamiltonian Systems Fast Download via Rapidshare Hotfile Fileserve Filesonic Megaupload, Differential Forms on Wasserstein Space and Infinite-Dimensional Hamiltonian Systems Torrents and Emule Download or anything related.
Dear visitor, you went to website as unregistered user.
We encourage you to Register or Login to website under your name.
Information
Members of Guest cannot leave comments.